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Proposition 0.1 (Exercise 9). Let K/k be a finite separable extension, with [K : k] = p
for a prime p and K = k(). Let 04,...,0, be the distinct embeddings of K into k, and let
0y = 01(0),...,0, = 0,(0) be the conjugates of . Assume 6 = 0y, and suppose 03 € K. Then
K/k is Galois and cyclic.

Proof. Assume K is embedded in an algebraic closure k, and let L be the splitting field of
Irr(0, k) in k, that is, L = k(6y,...,0,). Since K/k is separable, so is L/k, so L/k is Galois.
Furthermore, L/k is finite.

We know that the degree of Irr(6, k) divides [L : k], and that [L : k] = | Gal(L/k)|. Since
degIrr(0, k) = p, we get that p divides | Gal(L/k)|. Since this is a finite group, by Cauchy’s
Theorem, | Gal(L/k)| has an element of order p, call it 0. Since o € G = Gal(L/k), for any
k we have o*(6) = 6; for some i, so

{6,0(0),0%(0),..., 0" (0)}
has p distinct elements. It is also a subset of {6, ...,6,}, so they must be equal as sets.
{0,0(0),0%),...,0"1(0)} = {01,... .0y}

Thus 0™ () = 0 for some m. Note that since K = k() and ¢™(k) C k and 6™(0) =6, € K
(by hypothesis), we have (¢™)¥(K) C K for any k. Since p is prime, m is relatively prime
to p, so o™ is also of order p, so

{0.0™(0), (™)*(0),..., (™))" (O)}
is a set with p distinct elements. Thus
{0,0™(0), (6™)*(@),...,(@™)PHO)} = {61,...,0,}

so we have 0y,...,0, € 0"(K) C K. Thus L = k(fy,...,0,) C K, so K is the splitting field
for Irr(0, k). Thus K/k is normal, so it is Galois. Since Gal(K/k) has order [K : k] = p and

has an element of order p, it is cyclic. O

Proposition 0.2 (Exercise 15). Let K/k be a Galois extension and let F' be an intermediate
field, k C F C K. Let G = Gal(K/k), and define

H={oceG:0(F)CF}
Let A= Gal(K/F). Then H = N, (the normalizer of A in G.)
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Proof. First we show that H C N4. We need to show that for ¢ € H, we have 0 ' Ao = A,
which we will show by showing that the sets include both ways. First we show o !Ac C A.
Let 0 € H and 7 € A. Then 7|r = Idg, so if x € F, then

o 'ro(z) = Hr(o(x)) =0 o)) =2

1

(because o(x) € ), so o '7o|p = Idp, so 0~ 'r0 € A. Since 07! € H as well, we also have

cAoc~l C A.
Now we show A C 07 'Ac for 0 € H. Let 7 € A. By the above, cAc~! C A, so
oro~! € A. Then since 071 Ao C A, we have

o oroNoco Ao = T€0 A0

Thus A C 071 Ao. This completes the argument that H C Ny.
Now we show Ny C H. Let 0 € Ns. We just need to show that o(F) C F. Using the
previous part, 0 'ro € A, so 0 'ro|r = Idp, so To|p = op. Thus for x € F,

7(o(x)) = o()

which says that o(x) is in the fixed field of A. The fixed field of A is precisely F', so o(z) € F.
Thus N4 C H. Together with the opposite inclusion, this shows N4 = H. O

I have placed exercise 18a after 18b since I use the result from 18b in the arguments for 18a.
Proposition 0.3 (for Exercise 18b). Let m € N. Then ¢(m) = 2 if and only if m = 3,4,6.

Proof. 1t is straightforward to check that ¢(m) = 2 for m = 3,4, 6 and no other small values
of m. We claim that for m > 6, ¢(m) > 2. We can write m as a product of primes,

_ k1 k2 k
m = Pp1 Do pn”

Then by the multiplicative property of ¢,

o(m) = o(pt")d(p5?) . .. d(pE")

If any p; > 5, then ¢(m) > p; —1 > 4 > 2, so we can assume m is only divisible by the
primes 2 and 3, so m = 2¥13%2. Then using the formula for ¢(p*),

o(m) = ¢(2)p(3") = 2" (2 - NE=TH (B - 1) =223 > 2

This is equal to 2 precisely when k; = 1 and ke = 1, and strictly larger for all other ki, ks.
Thus for m > 6, we have ¢(m) > 2. O

Proposition 0.4 (Exercise 18b). A primitive mth root of unity has degree 2 over Q if and
only if m = 3,4,6.

Proof. By Theorem 3.1 in Lang, [Q((n) : Q] = ¢(m) where ¢ is the Euler totient function.
One can check by counting that ¢(m) = 2 for m = 3,4,6 and not for m = 1,5. By the
previous lemma, ¢(m) > 2 for m > 6, so these are the only possible values of m. ]
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Lemma 0.5 (for Exericse 18a). Let p,q be distinct primes. Then Q(/p) N Q(\/q) = Q.
Proof. Suppose the intersection is not empty. Then /g € Q(,/p), so

Vq=a+0byp

for some a,b € Q. Then

q= (a+byp)* = a*+ 2aby/p + b*p
But ¢ is an integer, and 2ab,/p is not an integer, so this is a contradiction. O]

Proposition 0.6 (Exercise 18a). The only roots of unity in Q(v/2), Q(+v/3), Q(v/=2), Q(~/=5)
are £1. Q(i) contains all 4th roots of unity, and Q(v/—3) contains all 6th roots of unity.

Proof. Both Q(v/2) and Q(v/3) are contained in R, so they can only contain roots of unity
that lie in R. The only roots of unity in R are 41, so those are the only roots of unity in
Q(2), Q3).

Consider a general quadratic extension Q(«) for some « be algebraic over Q with [Q(«) :
Q] = 2, and suppose Q(«) contains an nth root of unity (. Then we have a tower Q C
Q(¢) € Q(a), and by the tower law, [Q({) : Q] must be 1 or 2. If it is one, then ¢ € Q, so
¢ ==+1. If it is 2, then by 18a, n = 3,4, or 6. We can enumerate the 3rd, 4th, and 6th roots
of unity in C:

+14++-3
2

Now consider @ = /=2 and a = \/=5. (These are in fact quadratic extensions, with
irreducible polynomials x2 4+ 2 and x? + 5 respectively.) By the previous general argument,
the only possible roots of unity in these extensions are 3rd, 4th, or 6th roots. We claim
that neither Q(v/—2) nor Q(v/=5) contains any 3rd, 4th, or 6th root of unity except for #1.
It is sufficient to show that neither contains v/—3, because of the expressions for 3rd and
6th roots of unity above. Using the previous lemma with primes -2,-3, and -2,-5 says that

Q(vV=2) NQ(V=3) = Q and QV=5) NQ(V=3) = Q. -

Lemma 0.7 (for Exercise 19a). Let k be a field with algebraic closure k, and let o € k be
algebraic over k. Let f(x) =Irr(a, k). Let a,b € k with a # 0. Then

3rd roots: 1, 4th roots: £ 1,4+ 6th roots: +1,

—-1++v-3
2

Irr(aa + b, k) = 1cf (%(a: - b))

where ¢ is the leading coefficient of f (1 (x — b))

a

Proof. We check that ac + b is a root of f (1(z —b)).

(Gtaa+o-0) =1 (L)) = s =0

Since f is irreducible, so is this linear transoformation of f. The adjustment by % forces
the leading coefficient to be 1. Thus this transformed f is the irreducible polynomial of
ac + b. m



Lemma 0.8 (for Exercise 19). Let n € N. If n = p" for some prime p, then ®,(1) = p. If
n is not a prime power, then ®,(1) = 1.

Proof. First suppose that n is a prime power. Then

Do) = By (1) = B, (47 ) = (ﬂl)“ n (yfl)”z bt

There are p terms, and plugging in 1 for z makes each term one, so ®,(1) = p. Now suppose
n is not a prime power. We will proceed by induction on n. For n = 6,

Pg(z) =2 -1 +1

so the result holds in the base case. Assume that ®;(1) = 1 for every non-prime power up
to n — 1, and factor n into prime powers as n = p]fl ...pFm. We know that

O, (z) = [ [ Pulz)
dln

SO

l+x+...+2" = H Q4(z) = D, (2) H D 4(x)

d|n,d#1 d|n,d#1,d#n
Plugging in x = 1 gives

n=2=a,1) [] @)

d|n,d#1,d#n
By induction hypothesis, ®4(1) = 1 for d not equal to a prime power, and @p@i (1) = p;. For
each p;, there are exactly k; times that d = p] in the product, so

H dy(1) =pbr .. phm =n
d|n,d#1,d#n

Thus

n=ao,()n = d,(1)=— =1
n

This completes the induction. O
Lemma 0.9 (for Exercise 19). Let ¢ be the Euler phi function. Then ¢(n) is even forn > 3.

Proof. 1f n is a prime power, then we know that

p(n)=o(p") =p ' (p—1)

If p is odd, then p—1 is even so ¢(n) is even. If p is even (i.e. p = 2), then r > 1 since n > 3,
so p"~!is even. Thus ¢(n) is even for n a prime power. If n is not a prime power, then we
can write n as a product of prime powers plfl ...pFm. Then by the multiplicative property,

o(n) = d(pi") ... d(phr)

and one of the p; must be at least 3 since n > 3. Thus ¢(n) is even by the previous
argument. O



Proposition 0.10 (Exercise 19a). Let p be a prime, and let n = p” for r € N. Let ¢ be a
primitive nth root of unity, and let K = Q(C). Then Ngg(1 —¢) = p.

Proof. We know that the irreducible polynomial of ¢ over Q is ®,,(x) (Lang pg 279), so using
the previous lemma, the irreducible polynomial of 1 — ¢ over Q is ®,(1 — ). By Theorem
5.1 (Lang pg 285),

Nijo(l = ¢) = (=1)"™aq
where aq is the constant term of ®,,(1 — x). In our case, n = p", so by the previous lemma,

®,,(1) = p, that is, the constant term ay of ®,,(1 — z) is p. By another lemma, ¢(n) is even
as long as n > 3. (If n = 2, then the result is trivial since ( = —1.) Thus

Ngj(1—=¢)=p
0

Proposition 0.11 (Exercise 19b). Let n be divisible by at least two primes, and let ¢ be a
primitive nth root of unity, and let K = Q(C). Then Ngjg(l —¢) = 1.

Proof. As in part (a), the irreducible polynomial of (1 — () is ®,(1 — z), and Ng,g(1 —() is
(—1)*™aq where ay is the constant term of ®,(1 — z). Since n is divisible by at least two
primes, n > 3 so ¢(n) is even. As shown in previous lemma, for n divisible by at least two
primes, ®,(1) = 1, that is, ap = 1. Thus

NK/Q(l —C) = ag = 1

Lemma 0.12 (for Exercise 21a). Let n € N. The discriminant of ™ — 1 is £n™.

Proposition 0.13 (Exercise 21a). Let a € Z, a # 0, let p be a prime, and let n € Z* such
that p does not divide n. Then p divides ®,(a) if and only if a has period n in (Z/pZ)*.

Proof. Suppose a has period n in (Z/pZ)*. Then a™ = 1 mod p, and a* # modp for k < n
Then pla™ — 1. Since

a"—1= [ ®ala)=2u(a) J] ®ala)

dln,d<n d|n,d<n

If p does not divide ®,,(a), then it must divide some other ®,4(a). But

a’ =1 =[] ®ala)

k|d

so ®y4(a)la? — 1, so then p divides a? — 1, and then a? = 1 mod p with d < n. This is a
contradiction since n is the order of a. Thus we conclude that p does not divide any ®,4(a)
for d < n, so p|®,(a).

Now suppose that p divides ®,(a). Let k be the multiplicative order of a mod p, and
suppose k # n. By the previous direction p|®.(a). Then pla™ — 1 and pla* — 1, so a" =
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a® =1 mod p. Since k is the order, k|n. Let R be the resultant of @, (x) and ®;(x). By the
remark on page 202 of Lang, R can be written as

R(z) = f(2)®n(2) + 9(2)®n()

where f, g € Z[z]. Since p divides both ®,,(a) and ®x(a), p must divide R(a). By Proposition
8.5 (Lang pg 204), R(z) divides the discriminant of any common multiple of ®,,(z) and ®x(x).
In particular, since k|n, 2™ — 1 is a common multiple of ®,(x) and ®,(x). The discriminant
of 2" — 1 is £n™. We have that p divides R(a), which divides £n™, so p must divide n. This
is a contradiction, since p does not divide n (by hypothesis). Thus the order of a mod p must

not be k for k # n, so it must be precisely n. O
Lemma 0.14 (for Exercise 23a). Let (G, x) be an abelian group with elements xq,. .., x;
with finite orders ny,...,ny. Then the order of xy...xy is lem(ny, ..., ny).

Proof. We may assume that no z; is the identity. For ¢ # j, since z;, x; have relatively prime
orders, x; cannot be a power of z;, since all powers of x; have order that divides the order
of x; (using Lagrange’s Theorem). As a consequence, the cyclic subgroups (z;) and (x;)
intersect only in the identity.

In the case t = 1 there is nothing to prove. Suppose t = 2, and let k be the order of xjxs.
Then

k

ok
1= T

(r122)" =1 = o

Since (x;) N {z;) = {1}, this implies #¥ = ;% = 1, so k is a multiple of both n; and ny. By
definition, k is minimal, so k = lem(ng, ny).

Now we prove the general statement by induction. Suppose it holds true up to ft,
and we have xi,...,z;y; with orders ni,...,n. . By inductive hypothesis, the order
of y...x; is lem(ny,...,n;). Then by the case t = 2, the order of (xy...x4)xiq is
lem(lem(nq, ..., n),ne01). Since lem is associative, this is equal to lem(ng, ..., ng,nee),
so the induction is complete. O

Lemma 0.15 (for Exercise 23a). Let (G, x) be an abelian group with elements x1, ...,z of
(finite) orders nq,...,ny € N respectively. Suppose that ged(n;,n;) =1 for alli,j. Then the
order of x1...xy 1SNy ...Ny.

Proof. By Lemma 0.14, the order of zy,...,2; is lem(ny,...,n;). Since ged(n;,n;) =1, in
particular we have ged(ng,...,n;) = 1. We have the equality

(gcd(nl, . ,nt)) <lcm(n1, . ,nt)> =n...n

Since the ged is one, we get lem(ny, ..., ny) =ny...n,. ]
Lemma 0.16 (for Exercise 23a). Let ny,...,n; be pairwise relatively prime positive integers.
Then .
(Z/(n1...n)Z)" = [ [(2/ni)"
i=1
Proof. See Lang page 95. O



Lemma 0.17 (for Exercise 23a). Let ny,...,n; be pairwise relatively prime positive integers,
and for each i let (; be a primitive n;th root of unity. Define ( = szl (i. Then C is a
primitive (H§:1 nz) -th root of unity, and
t
Gal(Q(¢)/Q) = [ [(z/niz)"
i=1

Proof. Apply the previous lemma to the group of nonzero complex numbers under multi-
plication, with z; = (;. Each (; has order n;, and the n; are all pairwise relatively prime.
Lemma 0.15 allows us to conclude that ¢ has order H§:1 n;, so ¢ is a primitive root of unity
of that order. Then by Theorem 3.1 in Lang,

Gal(Q(€)/Q) = (Z/(n1 ... ) Z)"
which by Lemma 0.16 is isomorphic to [['_,(Z/n,Z)*. O

Proposition 0.18 (Exercise 23a). Let G be a finite abelian group. Then there exists an
abelian extension of Q with Galois group G.

Proof. We can write GG as a product of cyclic groups.

t
G=][z/nz
=1

By the result in 23(b), for each ¢ = 1,...,¢ there are infinitely may primes p so that p =
1 mod n;. Choose p; so that p; = 1 mod n;. Then choose p, from the infinite set of primes
= 1 mod n,. Inductively, choose p; so that py,...,p; are distinct primes and p; = 1 mod n;.
Thus we have distinct primes pq, ..., p; so that p; = 1 mod n;.

Since p; = 1 mod n;, we have n;|p; — 1, so there exist m; so that m;n; = p; — 1. Since
(Z)piZ)* is a cyclic group of order p; — 1, there is a unique subgroup H; C (Z/p;Z)* of order
m; = %= Then (Z/p;Z)*/H; is a cyclic group of order ’% =ny, so (Z/p;Z)*/H; = 7/n;Z.
Define H szl H;. Then we can rewrite G as

t t t t
o= etz Ty~ Baln . Ian
i=1 i=1 i=1""1

For each 17, let (; be a primitive p;th root of unity, and define { = H§:1 (;. Then by Lemma
0.17,

Gal(Q(¢)/Q) = [ [(z/piz)
=1

Let K be the fixed field of H. Since Gal(Q(¢)/Q) is a product of abelian groups it is abelian,
so H is a normal subgroup. Thus K/Q is Galois, and by the funamental theorem, it has
Galois group
~ ~ H§=1<Z/piz)* ~
Gal(K/Q) = ((GallQ(¢)/Q))/H = S~ == G

Thus K is the desired abelian extension field of Q with Galois group G. O



