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Proposition 0.1 (Exercise 9). Let K/k be a finite separable extension, with [K : k] = p
for a prime p and K = k(θ). Let σ1, . . . , σp be the distinct embeddings of K into k, and let
θ1 = σ1(θ), . . . , θp = σp(θ) be the conjugates of θ. Assume θ = θ1, and suppose θ2 ∈ K. Then
K/k is Galois and cyclic.

Proof. Assume K is embedded in an algebraic closure k, and let L be the splitting field of
Irr(θ, k) in k, that is, L = k(θ1, . . . , θp). Since K/k is separable, so is L/k, so L/k is Galois.
Furthermore, L/k is finite.

We know that the degree of Irr(θ, k) divides [L : k], and that [L : k] = |Gal(L/k)|. Since
deg Irr(θ, k) = p, we get that p divides |Gal(L/k)|. Since this is a finite group, by Cauchy’s
Theorem, |Gal(L/k)| has an element of order p, call it σ. Since σ ∈ G = Gal(L/k), for any
k we have σk(θ) = θi for some i, so

{θ, σ(θ), σ2(θ), . . . , σp−1(θ)}

has p distinct elements. It is also a subset of {θ1, . . . , θp}, so they must be equal as sets.

{θ, σ(θ), σ2(θ), . . . , σp−1(θ)} = {θ1, . . . , θp}

Thus σm(θ) = θ2 for some m. Note that since K = k(θ) and σm(k) ⊂ k and σm(θ) = θ2 ∈ K
(by hypothesis), we have (σm)k(K) ⊂ K for any k. Since p is prime, m is relatively prime
to p, so σm is also of order p, so

{θ, σm(θ), (σm)2(θ), . . . , (σm)p−1(θ)}

is a set with p distinct elements. Thus

{θ, σm(θ), (σm)2(θ), . . . , (σm)p−1(θ)} = {θ1, . . . , θp}

so we have θ1, . . . , θp ∈ σm(K) ⊂ K. Thus L = k(θ1, . . . , θp) ⊂ K, so K is the splitting field
for Irr(θ, k). Thus K/k is normal, so it is Galois. Since Gal(K/k) has order [K : k] = p and
has an element of order p, it is cyclic.

Proposition 0.2 (Exercise 15). Let K/k be a Galois extension and let F be an intermediate
field, k ⊂ F ⊂ K. Let G = Gal(K/k), and define

H = {σ ∈ G : σ(F ) ⊂ F}

Let A = Gal(K/F ). Then H = NA (the normalizer of A in G.)
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Proof. First we show that H ⊂ NA. We need to show that for σ ∈ H, we have σ−1Aσ = A,
which we will show by showing that the sets include both ways. First we show σ−1Aσ ⊂ A.
Let σ ∈ H and τ ∈ A. Then τ |F = IdF , so if x ∈ F , then

σ−1τσ(x) = σ−1(τ(σ(x)) = σ−1(σ(x)) = x

(because σ(x) ∈ x), so σ−1τσ|F = IdF , so σ−1τσ ∈ A. Since σ−1 ∈ H as well, we also have
σAσ−1 ⊂ A.

Now we show A ⊂ σ−1Aσ for σ ∈ H. Let τ ∈ A. By the above, σAσ−1 ⊂ A, so
στσ−1 ∈ A. Then since σ−1Aσ ⊂ A, we have

σ−1(στσ−1)σ ∈ σ−1Aσ =⇒ τ ∈ σ−1Aσ

Thus A ⊂ σ−1Aσ. This completes the argument that H ⊂ NA.
Now we show NA ⊂ H. Let σ ∈ NA. We just need to show that σ(F ) ⊂ F . Using the

previous part, σ−1τσ ∈ A, so σ−1τσ|F = IdF , so τσ|F = σF . Thus for x ∈ F ,

τ(σ(x)) = σ(x)

which says that σ(x) is in the fixed field of A. The fixed field of A is precisely F , so σ(x) ∈ F .
Thus NA ⊂ H. Together with the opposite inclusion, this shows NA = H.

I have placed exercise 18a after 18b since I use the result from 18b in the arguments for 18a.

Proposition 0.3 (for Exercise 18b). Let m ∈ N. Then φ(m) = 2 if and only if m = 3, 4, 6.

Proof. It is straightforward to check that φ(m) = 2 for m = 3, 4, 6 and no other small values
of m. We claim that for m > 6, φ(m) > 2. We can write m as a product of primes,

m = pk11 p
k2
2 . . . pknn

Then by the multiplicative property of φ,

φ(m) = φ(pk11 )φ(pk22 ) . . . φ(pknn )

If any pi ≥ 5, then φ(m) ≥ pi − 1 ≥ 4 > 2, so we can assume m is only divisible by the
primes 2 and 3, so m = 2k13k2 . Then using the formula for φ(pk),

φ(m) = φ(2k1)φ(3k2) = (2k1−1)(2− 1)(3k2−1)(3− 1) = 2(2k1−13k2−1) ≥ 2

This is equal to 2 precisely when k1 = 1 and k2 = 1, and strictly larger for all other k1, k2.
Thus for m > 6, we have φ(m) > 2.

Proposition 0.4 (Exercise 18b). A primitive mth root of unity has degree 2 over Q if and
only if m = 3, 4, 6.

Proof. By Theorem 3.1 in Lang, [Q(ζm) : Q] = φ(m) where φ is the Euler totient function.
One can check by counting that φ(m) = 2 for m = 3, 4, 6 and not for m = 1, 5. By the
previous lemma, φ(m) > 2 for m > 6, so these are the only possible values of m.
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Lemma 0.5 (for Exericse 18a). Let p, q be distinct primes. Then Q(
√
p) ∩Q(

√
q) = Q.

Proof. Suppose the intersection is not empty. Then
√
q ∈ Q(

√
p), so

√
q = a+ b

√
p

for some a, b ∈ Q. Then

q = (a+ b
√
p)2 = a2 + 2ab

√
p+ b2p

But q is an integer, and 2ab
√
p is not an integer, so this is a contradiction.

Proposition 0.6 (Exercise 18a). The only roots of unity in Q(
√

2),Q(
√

3),Q(
√
−2),Q(

√
−5)

are ±1. Q(i) contains all 4th roots of unity, and Q(
√
−3) contains all 6th roots of unity.

Proof. Both Q(
√

2) and Q(
√

3) are contained in R, so they can only contain roots of unity
that lie in R. The only roots of unity in R are ±1, so those are the only roots of unity in
Q(
√

2),Q(
√

3).
Consider a general quadratic extension Q(α) for some α be algebraic over Q with [Q(α) :

Q] = 2, and suppose Q(α) contains an nth root of unity ζ. Then we have a tower Q ⊂
Q(ζ) ⊂ Q(α), and by the tower law, [Q(ζ) : Q] must be 1 or 2. If it is one, then ζ ∈ Q, so
ζ = ±1. If it is 2, then by 18a, n = 3, 4, or 6. We can enumerate the 3rd, 4th, and 6th roots
of unity in C:

3rd roots: 1,
−1±

√
−3

2
4th roots: ± 1,±i 6th roots: ± 1,

±1±
√
−3

2

Now consider α =
√
−2 and α =

√
−5. (These are in fact quadratic extensions, with

irreducible polynomials x2 + 2 and x2 + 5 respectively.) By the previous general argument,
the only possible roots of unity in these extensions are 3rd, 4th, or 6th roots. We claim
that neither Q(

√
−2) nor Q(

√
−5) contains any 3rd, 4th, or 6th root of unity except for ±1.

It is sufficient to show that neither contains
√
−3, because of the expressions for 3rd and

6th roots of unity above. Using the previous lemma with primes -2,-3, and -2,-5 says that
Q(
√
−2) ∩Q(

√
−3) = Q and Q(

√
−5) ∩Q(

√
−3) = Q.

Lemma 0.7 (for Exercise 19a). Let k be a field with algebraic closure k, and let α ∈ k be
algebraic over k. Let f(x) = Irr(α, k). Let a, b ∈ k with a 6= 0. Then

Irr(aα + b, k) = 1cf

(
1

a
(x− b)

)
where c is the leading coefficient of f

(
1
a
(x− b)

)
.

Proof. We check that aα + b is a root of f
(
1
a
(x− b)

)
.

f

(
1

a
(aα + b− b)

)
= f

(
1

a
(aα)

)
= f(α) = 0

Since f is irreducible, so is this linear transoformation of f . The adjustment by 1
c

forces
the leading coefficient to be 1. Thus this transformed f is the irreducible polynomial of
aα + b.
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Lemma 0.8 (for Exercise 19). Let n ∈ N. If n = pr for some prime p, then Φn(1) = p. If
n is not a prime power, then Φn(1) = 1.

Proof. First suppose that n is a prime power. Then

Φn(x) = Φpr(x) = Φp

(
xp

r−1
)

=
(
xp

r−1
)p−1

+
(
xp

r−1
)p−2

+ . . .+ 1

There are p terms, and plugging in 1 for x makes each term one, so Φn(1) = p. Now suppose
n is not a prime power. We will proceed by induction on n. For n = 6,

Φ6(x) = x2 − x+ 1

so the result holds in the base case. Assume that Φj(1) = 1 for every non-prime power up
to n− 1, and factor n into prime powers as n = pk11 . . . pkmm . We know that

Φn(x) =
∏
d|n

Φd(x)

so
1 + x+ . . .+ xn−1 =

∏
d|n,d 6=1

Φd(x) = Φn(x)
∏

d|n,d 6=1,d 6=n

Φd(x)

Plugging in x = 1 gives

n = Φn(1)
∏

d|n,d 6=1,d 6=n

Φd(1)

By induction hypothesis, Φd(1) = 1 for d not equal to a prime power, and Φ
p
ki
i

(1) = pi. For

each pi, there are exactly ki times that d = pri in the product, so∏
d|n,d 6=1,d 6=n

Φd(1) = pk11 . . . pkmm = n

Thus
n = Φn(1)n =⇒ Φn(1) =

n

n
= 1

This completes the induction.

Lemma 0.9 (for Exercise 19). Let φ be the Euler phi function. Then φ(n) is even for n ≥ 3.

Proof. If n is a prime power, then we know that

φ(n) = φ(pr) = pr−1(p− 1)

If p is odd, then p−1 is even so φ(n) is even. If p is even (i.e. p = 2), then r > 1 since n ≥ 3,
so pr−1 is even. Thus φ(n) is even for n a prime power. If n is not a prime power, then we
can write n as a product of prime powers pk11 . . . pkmm . Then by the multiplicative property,

φ(n) = φ(pk11 ) . . . φ(pkmm )

and one of the pi must be at least 3 since n ≥ 3. Thus φ(n) is even by the previous
argument.
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Proposition 0.10 (Exercise 19a). Let p be a prime, and let n = pr for r ∈ N. Let ζ be a
primitive nth root of unity, and let K = Q(ζ). Then NK/Q(1− ζ) = p.

Proof. We know that the irreducible polynomial of ζ over Q is Φn(x) (Lang pg 279), so using
the previous lemma, the irreducible polynomial of 1 − ζ over Q is Φn(1 − x). By Theorem
5.1 (Lang pg 285),

NK/Q(1− ζ) = (−1)φ(n)a0

where a0 is the constant term of Φn(1− x). In our case, n = pr, so by the previous lemma,
Φn(1) = p, that is, the constant term a0 of Φn(1− x) is p. By another lemma, φ(n) is even
as long as n ≥ 3. (If n = 2, then the result is trivial since ζ = −1.) Thus

NK/Q(1− ζ) = p

Proposition 0.11 (Exercise 19b). Let n be divisible by at least two primes, and let ζ be a
primitive nth root of unity, and let K = Q(ζ). Then NK/Q(1− ζ) = 1.

Proof. As in part (a), the irreducible polynomial of (1− ζ) is Φn(1− x), and NK/Q(1− ζ) is
(−1)φ(n)a0 where a0 is the constant term of Φn(1 − x). Since n is divisible by at least two
primes, n ≥ 3 so φ(n) is even. As shown in previous lemma, for n divisible by at least two
primes, Φn(1) = 1, that is, a0 = 1. Thus

NK/Q(1− ζ) = a0 = 1

Lemma 0.12 (for Exercise 21a). Let n ∈ N. The discriminant of xn − 1 is ±nn.

Proposition 0.13 (Exercise 21a). Let a ∈ Z, a 6= 0, let p be a prime, and let n ∈ Z+ such
that p does not divide n. Then p divides Φn(a) if and only if a has period n in (Z/pZ)∗.

Proof. Suppose a has period n in (Z/pZ)∗. Then an ≡ 1 mod p, and ak 6≡ modp for k < n
Then p|an − 1. Since

an − 1 =
∏

d|n,d≤n

Φd(a) = Φn(a)
∏

d|n,d<n

Φd(a)

If p does not divide Φn(a), then it must divide some other Φd(a). But

ad − 1 =
∏
k|d

Φd(a)

so Φd(a)|ad − 1, so then p divides ad − 1, and then ad ≡ 1 mod p with d < n. This is a
contradiction since n is the order of a. Thus we conclude that p does not divide any Φd(a)
for d < n, so p|Φn(a).

Now suppose that p divides Φn(a). Let k be the multiplicative order of a mod p, and
suppose k 6= n. By the previous direction p|Φk(a). Then p|an − 1 and p|ak − 1, so an ≡
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ak ≡ 1 mod p. Since k is the order, k|n. Let R be the resultant of Φn(x) and Φk(x). By the
remark on page 202 of Lang, R can be written as

R(x) = f(x)Φn(x) + g(x)Φn(x)

where f, g ∈ Z[x]. Since p divides both Φn(a) and Φk(a), p must divide R(a). By Proposition
8.5 (Lang pg 204), R(x) divides the discriminant of any common multiple of Φn(x) and Φk(x).
In particular, since k|n, xn − 1 is a common multiple of Φn(x) and Φk(x). The discriminant
of xn− 1 is ±nn. We have that p divides R(a), which divides ±nn, so p must divide n. This
is a contradiction, since p does not divide n (by hypothesis). Thus the order of a mod p must
not be k for k 6= n, so it must be precisely n.

Lemma 0.14 (for Exercise 23a). Let (G,×) be an abelian group with elements x1, . . . , xt
with finite orders n1, . . . , nt. Then the order of x1 . . . xt is lcm(n1, . . . , nt).

Proof. We may assume that no xi is the identity. For i 6= j, since xi, xj have relatively prime
orders, xi cannot be a power of xj, since all powers of xj have order that divides the order
of xj (using Lagrange’s Theorem). As a consequence, the cyclic subgroups 〈xi〉 and 〈xj〉
intersect only in the identity.

In the case t = 1 there is nothing to prove. Suppose t = 2, and let k be the order of x1x2.
Then

(x1x2)
k = 1 =⇒ xk1 = x−k2

Since 〈xi〉 ∩ 〈xj〉 = {1}, this implies xk1 = x−k2 = 1, so k is a multiple of both n1 and n2. By
definition, k is minimal, so k = lcm(n1, n2).

Now we prove the general statement by induction. Suppose it holds true up to t,
and we have x1, . . . , xt+1 with orders n1, . . . , nt+1. By inductive hypothesis, the order
of x1 . . . xt is lcm(n1, . . . , nt). Then by the case t = 2, the order of (x1 . . . xt)xt+1 is
lcm(lcm(n1, . . . , nt), nt+1). Since lcm is associative, this is equal to lcm(n1, . . . , nt, nt+1),
so the induction is complete.

Lemma 0.15 (for Exercise 23a). Let (G,×) be an abelian group with elements x1, . . . , xt of
(finite) orders n1, . . . , nt ∈ N respectively. Suppose that gcd(ni, nj) = 1 for all i, j. Then the
order of x1 . . . xt is n1 . . . nt.

Proof. By Lemma 0.14, the order of x1, . . . , xt is lcm(n1, . . . , nt). Since gcd(ni, nj) = 1, in
particular we have gcd(n1, . . . , nt) = 1. We have the equality(

gcd(n1, . . . , nt)
)(

lcm(n1, . . . , nt)
)

= n1 . . . nt

Since the gcd is one, we get lcm(n1, . . . , nt) = n1 . . . nt.

Lemma 0.16 (for Exercise 23a). Let n1, . . . , nt be pairwise relatively prime positive integers.
Then

(Z/(n1 . . . nt)Z)∗ ∼=
t∏
i=1

(Z/niZ)∗

Proof. See Lang page 95.
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Lemma 0.17 (for Exercise 23a). Let n1, . . . , nt be pairwise relatively prime positive integers,
and for each i let ζi be a primitive nith root of unity. Define ζ =

∏t
i=1 ζi. Then ζ is a

primitive
(∏t

i=1 ni
)
-th root of unity, and

Gal(Q(ζ)/Q) ∼=
t∏
i=1

(Z/niZ)∗

Proof. Apply the previous lemma to the group of nonzero complex numbers under multi-
plication, with xi = ζi. Each ζi has order ni, and the ni are all pairwise relatively prime.
Lemma 0.15 allows us to conclude that ζ has order

∏t
i=1 ni, so ζ is a primitive root of unity

of that order. Then by Theorem 3.1 in Lang,

Gal(Q(ζ)/Q) ∼= (Z/(n1 . . . nt)Z)∗

which by Lemma 0.16 is isomorphic to
∏t

i=1(Z/niZ)∗.

Proposition 0.18 (Exercise 23a). Let G be a finite abelian group. Then there exists an
abelian extension of Q with Galois group G.

Proof. We can write G as a product of cyclic groups.

G ∼=
t∏
i=1

Z/niZ

By the result in 23(b), for each i = 1, . . . , t there are infinitely may primes p so that p ≡
1 mod ni. Choose p1 so that p1 ≡ 1 mod n1. Then choose p2 from the infinite set of primes
≡ 1 mod n2. Inductively, choose pi so that p1, . . . , pi are distinct primes and pi ≡ 1 mod ni.
Thus we have distinct primes p1, . . . , pt so that pi ≡ 1 mod ni.

Since pi ≡ 1 mod ni, we have ni|pi − 1, so there exist mi so that mini = pi − 1. Since
(Z/piZ)∗ is a cyclic group of order pi− 1, there is a unique subgroup Hi ⊂ (Z/piZ)∗ of order
mi = pi−1

ni
. Then (Z/piZ)∗/Hi is a cyclic group of order pi−1

mi
= ni, so (Z/piZ)∗/Hi

∼= Z/niZ.

Define H =
∏t

i=1Hi. Then we can rewrite G as

G ∼=
t∏
i=1

Z/niZ ∼=
t∏
i=1

(Z/piZ)∗/Hi
∼=
∏t

i=1(Z/piZ)∗∏t
i=1Hi

∼=
∏t

i=1(Z/piZ)∗

H

For each i, let ζi be a primitive pith root of unity, and define ζ =
∏t

i=1 ζi. Then by Lemma
0.17,

Gal(Q(ζ)/Q) ∼=
t∏
i=1

(Z/piZ)∗

Let K be the fixed field of H. Since Gal(Q(ζ)/Q) is a product of abelian groups it is abelian,
so H is a normal subgroup. Thus K/Q is Galois, and by the funamental theorem, it has
Galois group

Gal(K/Q) ∼=
(

Gal(Q(ζ)/Q)
)
/H ∼=

∏t
i=1(Z/piZ)∗∏t

i=1Hi

∼= G

Thus K is the desired abelian extension field of Q with Galois group G.
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